Result: On some reachability problems for diffusion processes

Title:
On some reachability problems for diffusion processes
Source:
Optimal control and partial differential equations (Paris, 4 December 2000). :394-403
Publisher Information:
Amsterdam; Tokyo: IOS Press, Ohmsha, 2001.
Publication Year:
2001
Physical Description:
print, 10 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Wayne State University, Department of Mathematics, Detroit, Michigan 48202, United States
CERN, 1211 Geneve, Switzerland
Rights:
Copyright 2001 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Energy

Mathematics
Accession Number:
edscal.1008030
Database:
PASCAL Archive

Further Information

The main purpose of this paper is to discuss the minimization of energy spent in order that a controlled diffusion process reaches a given target, a d-dimensional bounded domain. The exterior Dirichlet problem for the Hamilton-Jacobi-Bellman equation is studied for a class of criteria which includes the case of energy. Extensions to diffusion with jumps, examples and some other reachability problems are considered.