Result: Temperature-gradient and composition-spread deposition of epitaxial oxide films and high throughput characterization
Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan
Frontier Collaborative Research Center, Tokyo Institute of Technology, Yokohama 226-8503, Japan
Combinatorial Materials Exploration and Technology (COMET), Tsukuba 305-0044, Japan
CREST, Japan Science & Technology Corporation, NIRIM, Tokyo 169-0072, Japan
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Further Information
We have developed a laser molecular beam epitaxy system capable of the temperature-gradient and/or composition-spread integration of thin films in a substrate. The latter is achieved by using a moving mask system synchronizing with target exchange and laser pulse. The former employs a substrate holder having a controlled asymmetric thermal conduction heated by a focused Nd:YAG continuous wave laser beam. A concurrent x-ray diffractometer can immediately characterize the dependences of the lattice constant and crystalline quality on the film growth temperature and composition. The temperature-gradient method is very useful for revealing an optimum substrate temperature for epitaxial thin film growth. Several other characterization techniques such as magnetic field microscope and parallel transport measurement system developed for characterizing composition-spread thin films are presented.