Result: Linear and nonlinear mathematical models for noninvasive ventilation
Pulmonary and Critical Care Medicine, Regions Hospital and University of Minnesota, St. Paul, MN 55101, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Theoretical physics
Further Information
Two mathematical models are proposed for passive, noninvasive ventilation. Both models take the form of coupled ordinary differential equations that describe the volume in a single compartment lung. One model is linear and the other nonlinear; both models are derived from basic pressure balances in the lung-ventilator system. These models are also compared to a physical model using a test lung. Both the physical and mathematical models exhibit instabilities that appear to have important clinical implications. The simulations from these models, and the forms of their governing equations, suggest that the presence of an airway leak proximal to the airway opening during pressure support noninvasive ventilation may render this mode of ventilation dynamically unstable. The mathematical models are extended to incorporate a special type of nonpassive ventilation where the total cycle times of the ventilator depend on the inspiratory phases of these cycles.