Result: An adaptive resource allocation architecture applied to line tracking

Title:
An adaptive resource allocation architecture applied to line tracking
Source:
Sensor fusion : architectures, algorithms, and applications IV (Orlando FL, 25-28 April 2000)SPIE proceedings series. :379-388
Publisher Information:
Bellingham WA: SPIE, 2000.
Publication Year:
2000
Physical Description:
print, 6 ref
Original Material:
INIST-CNRS
Subject Terms:
Electronics, Electronique, Computer science, Informatique, Optics, Optique, Physics, Physique, Telecommunications, Télécommunications, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Recherche operationnelle. Gestion, Operational research. Management science, Recherche opérationnelle et modèles formalisés de gestion, Operational research and scientific management, Flots dans les réseaux. Problèmes combinatoires, Flows in networks. Combinatorial problems, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Intelligence artificielle, Artificial intelligence, Connexionnisme. Réseaux neuronaux, Connectionism. Neural networks, Algorithme flou, Fuzzy algorithm, Algoritmo borroso, Allocation ressource, Resource allocation, Asignación recurso, Base connaissance, Knowledge base, Base conocimiento, Commande floue, Fuzzy control, Control difusa, Complexité algorithme, Algorithm complexity, Complejidad algoritmo, Effet mémoire, Memory effect, Efecto memoria, Estimation état, State estimation, Estimación estado, Filtre Kalman, Kalman filter, Filtro Kalman, Logique floue, Fuzzy logic, Lógica difusa, Modélisation, Modeling, Modelización, Méthode adaptative, Adaptive method, Método adaptativo, Méthode récursive, Recursive method, Método recursivo, Pistage, Tracking, Rastreo, Poursuite, Tracking(movable target), Persecución y continuación, Sonar, Système expert, Expert system, Sistema experto, Temps réel, Real time, Tiempo real, Temps traitement, Processing time, Tiempo proceso, Traitement donnée, Data processing, Tratamiento datos
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
SPAWAR Systems Center, Code D722D, San Diego, CA 92152, United States
ORINCON Corporation, San Diego, CA 92121, United States
Rights:
Copyright 2000 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Operational research. Management
Accession Number:
edscal.1382448
Database:
PASCAL Archive

Further Information

Current line tracker approaches only address resources in the form of memory and processing time requirements. These architecture approaches limit the amount of complex algorithmic processing a line tracker may perform to provide the correct solution. Past approaches include single-hypothesis Kalman filter-based tracking and a-b tracking. Both approaches assume a real time recursive data processing requirement, and are fairly memory intensive. These architectures are not expandable. Recent research has demonstrated the benefits of a multiple hypothesis, multiple model sonar line tracking solution, achieved at significant computational cost. We have developed an adaptive architecture that trades computational resources for algorithm complexity based on environmental conditions. A Fuzzy Logic Rule-Based approach is applied to adaptively assign algorithmic resources to meet system requirements. The resources allocated by the Fuzzy Logic algorithm include (a) the number of hypotheses permitted (yielding multi-hypothesis and single-hypothesis modes), (b) the number of signal models to use (yielding an interacting multiple model capability), (c) a new track likelihood for hypothesis generation, (d) track attribute evaluator activation (for signal to noise ratio, frequency bandwidth, and others), and (e) adaptive cluster threshold control. Algorithm allocation is driven by a comparison of current throughput rates to a desired real time rate. The Fuzzy Logic Controlled (FLC) line tracker, a single hypothesis line tracker, and a multiple hypothesis line tracker are compared on real sonar data. System resource usage results demonstrate the utility of the FLC line tracker.