Result: Distribution of instanton sizes in a simplified instanton gas model

Title:
Distribution of instanton sizes in a simplified instanton gas model
Source:
Proceedings of the europhysics conference on computational physics (CCP 2001): computational modeling and simulation of complex systems, Aachen, Germany, September 5-8, 2001Computer physics communications. 147(1-2):423-426
Publisher Information:
Amsterdam: Elsevier Science, 2002.
Publication Year:
2002
Physical Description:
print, 19 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Institut für Theoretische Physik, Universität Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany
Institut für Theoretische Physik und Astrophysik, Universität Kiel, Leibnizstr. 15, 24098 Kiel, Germany
ISSN:
0010-4655
Rights:
Copyright 2003 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Physics of elementary particles and fields
Accession Number:
edscal.13855090
Database:
PASCAL Archive

Further Information

We investigate the distribution of instanton sizes in the framework of a simplified model for ensembles of instantons. This model takes into account the non-diluteness of instantons. The infrared problem for the integration over instanton sizes is dealt with in a self-consistent manner by approximating instanton interactions by a repulsive hard core potential. This leads to a dynamical suppression of large instantons. The characteristic features of the instanton size distribution are studied by means of analytic and Monte Carlo methods. In one dimension exact results can be derived. In any dimension we find a power law behaviour for small sizes, consistent with the semiclassical results. At large instanton sizes the distribution decays exponentially. The results are compared with those from lattice simulations.