Treffer: A chromaticity difference-based classification algorithm for imaging spectrometer data
Joint Laboratory for Geoinformation Science, The Chinese University of Hong Kong, Shatin, N.T., Hong-Kong
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Weitere Informationen
Hyperspectral remote sensing image classification generally adopts a direct spectral matching method. It is, however, inconvenient in the classification calculation because the complete reference spectra are needed. In this work we have developed a new chromaticity difference-based classification algorithm, which can be used to classify imaging spectrometer image data. In calculation, the algorithm itself is not directly relating to the number of spectral wavebands. It only needs three chromaticity coordinate parameters for both the image spectrum and the reference spectrum to complete the final classification calculation. In addition, the classification threshold for the algorithm can be easily set according to the color science theory, therefore, the classification results from the algorithm is reliable. Through a comparison with SAM algorithm, the performance of the new chromaticity difference-based classification algorithm was proved to be as good as SAM algorithm, but our algorithm was relatively simpler and flexible.