Result: Scattered subsets
Title:
Scattered subsets
Authors:
Source:
Combinatorics 2000Discrete mathematics. 267(1-3):213-228
Publisher Information:
Amsterdam: Elsevier, 2003.
Publication Year:
2003
Physical Description:
print, 9 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Combinatoire. Structures ordonnées, Combinatorics. Ordered structures, Combinatoire, Combinatorics, Problèmes combinatoires classiques, Classical combinatorial problems, Algèbre, Algebra, Théorie des nombres, Number theory, Coefficient binomial, Binomial coefficient, Coeficiente binomial, Combinatoire, Combinatorics, Combinatoria, Cycle, Ciclo, Ensemble ordonné, Ordered set, Conjunto ordenado, Mathématiques discrètes, Discrete mathematics, Matemáticas discretas, Mesure Gauss, Gaussian measure, Medida Gauss, Suite Fibonacci, Fibonacci sequence, Secuencia Fibonacci, Théorie nombre, Number theory, Teoría números, Nombre q Fibonacci généralisé, Generalized q Fibonacci number, Número real, Nombre q Lucas généralisé, Generalized q Lucas number, Sous ensemble diffuse, Scattered subset, Conjunto finito, Statistique sigma, Sigma statistics
Document Type:
Conference
Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Dipartimento di Matematica, Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milano, Italy
ISSN:
0012-365X
Rights:
Copyright 2003 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.14835973
Database:
PASCAL Archive
Further Information
We study combinatorial properties of the species of scattered subsets in the case of linearly ordered sets and in the case of cycles. In particular, we study the numbers of such subsets which turn out to be a generalization of Fibonacci and Lucas numbers. We also determine a generalization of the Cassini's identity. Finally, we define a q-analog of such numbers and we prove some q-analog identities.