Result: Diagnostics for conditional heteroscedasticity models: some simulation results

Title:
Diagnostics for conditional heteroscedasticity models: some simulation results
Authors:
Source:
Selected Papers of the MSSANZ/IMACS 14th Biennal Conference on Modelling and SimulationMathematics and computers in simulation. 64(1):113-119
Publisher Information:
Amsterdam: Elsevier, 2004.
Publication Year:
2004
Physical Description:
print, 11 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Economics, National University of Singapore, AS2, Arts Link, Kent Ridge Crescent, Singapore 119260, Singapore
ISSN:
0378-4754
Rights:
Copyright 2004 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.15358508
Database:
PASCAL Archive

Further Information

In this paper, we study the size and power of various diagnostic statistics for univariate conditional heteroscedasticity models. These test statistics include the residual-based tests recently derived by Tse, Li and Mak, and Wooldridge, respectively. Monte-Carlo experiments with 1000 replications are conducted to generate conditional variances which follow the autoregressive conditional heteroscedasticity (ARCH)/GARCH processes. We use quasi-maximum likelihood estimation (MLE) method to obtain estimates of parameters under different ARCH/ generalized ARCH (GARCH) models. It is found that the Tse and Li-Mak diagnostics are more powerful.