Result: An approximation based approach to infinitary lambda calculi

Title:
An approximation based approach to infinitary lambda calculi
Authors:
Source:
RTA 2004 : rewriting techniques and applications (Aachen, 3-5 June 2004)Lecture notes in computer science. :221-232
Publisher Information:
Berlin: Springer, 2004.
Publication Year:
2004
Physical Description:
print, 11 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
CWI, P.O.-box 94.079, 1090 GB Amsterdam, Netherlands
ISSN:
0302-9743
Rights:
Copyright 2004 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.15851913
Database:
PASCAL Archive

Further Information

We explore an alternative for metric limits in the context of infinitary lambda calculus with transfinite reduction sequences. We will show how to use the new approach to get calculi that correspond to the 111, 101 and 001 infinitary lambda calculi of Kennaway et al, which have been proved to correspond to Berarducci Trees, Levy-Longo Trees and Böhm Trees respectively. We will identify subsets of the sets of meaningless terms of the metric calculi and prove that the approximation based calculi are equivalent to their metric counterparts up to these subsets.