Result: Application of evolutionary computation techniques to the optimal short-term scheduling of the electrical energy production

Title:
Application of evolutionary computation techniques to the optimal short-term scheduling of the electrical energy production
Source:
Current topics in artificial intelligence (San Sebastian, 12-14 November 2003, revised selected papers)Lecture notes in computer science. :656-665
Publisher Information:
Berlin: Springer, 2004.
Publication Year:
2004
Physical Description:
print, 9 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Intelligence artificielle, Artificial intelligence, Apprentissage et systèmes adaptatifs, Learning and adaptive systems, Algorithme génétique, Genetic algorithm, Algoritmo genético, Algorithme évolutionniste, Evolutionary algorithm, Algoritmo evoluciónista, Complexité, Complexity, Complejidad, Court terme, Short term, Corto plazo, Energie électrique, Electric energy, Energía eléctrica, Faisabilité, Feasibility, Practicabilidad, Intelligence artificielle, Artificial intelligence, Inteligencia artificial, Méthode Complex, Complex method, Método Complex, Méthode combinatoire, Combinatorial method, Método combinatorio, Méthode heuristique, Heuristic method, Método heurístico, Nombre entier, Integer, Entero, Optimisation combinatoire, Combinatorial optimization, Optimización combinatoria, Ordonnancement, Scheduling, Reglamento, Performance algorithme, Algorithm performance, Resultado algoritmo, Problème combinatoire, Combinatorial problem, Problema combinatorio, Problème non linéaire, Nonlinear problems, Programmation non linéaire, Non linear programming, Programación no lineal, Programmation partiellement en nombres entiers, Mixed integer programming, Programación mixta entera, Raisonnement basé sur cas, Case based reasoning, Razonamiento fundado sobre caso
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Languages and Systems, University of Sevilla, Spain
Department of Electrical Engineering, University of Sevilla, Spain
ISSN:
0302-9743
Rights:
Copyright 2004 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.15993135
Database:
PASCAL Archive

Further Information

In this paper, an evolutionary technique applied to the optimal short-term scheduling (24 hours) of the electric energy production is presented. The equations that define the problem lead to a nonlinear mixed-integer programming problem with a high number of real and integer variables. Consequently, the resolution of the problem based on combinatorial methods is rather complex. The required heuristics, introduced to assure the feasibility of the constraints, are analyzed, along with a brief description of the proposed genetic algorithm. Finally, results from realistic cases based on the Spanish power system are reported, revealing the good performance of the proposed algorithm, taking into account the complexity and dimension of the problem.