Result: Fun-Sort: or the chaos of unordered binary search

Title:
Fun-Sort: or the chaos of unordered binary search
Source:
Fun with algorithms 2 (FUN 2001)Discrete applied mathematics. 144(3):231-236
Publisher Information:
Amsterdam; Lausanne; New York, NY: Elsevier, 2004.
Publication Year:
2004
Physical Description:
print, 8 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Computer Science, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
MIT Laboratory for Computer Science, Cambridge, MA 02139, United States
Department of Computer Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong-Kong
ISSN:
0166-218X
Rights:
Copyright 2004 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.16264242
Database:
PASCAL Archive

Further Information

Usually, binary search only makes sense in sorted arrays. We show that insertion sort based on repeated binary searches in an initially unsorted array also sorts n elements in time ⊖(n2 log n). If n is a power of two, then the expected termination point of a binary search in a random permutation of n elements is exactly the cell where the element should be if the array was sorted. We further show that we can sort in expected time ⊖(n2 log n) by always picking two random cells and swapping their contents if they are not ordered correctly.