Result: Computing Nash equilibria through computational intelligence methods

Title:
Computing Nash equilibria through computational intelligence methods
Source:
Selected Papers of the International Conference on Computational Methods in Sciences and Engineering (ICCMSE 2003), Kastoria, Greece, 12-16 September 2003Journal of computational and applied mathematics. 175(1):113-136
Publisher Information:
Amsterdam: Elsevier, 2005.
Publication Year:
2005
Physical Description:
print, 31 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Sciences appliquees, Applied sciences, Recherche operationnelle. Gestion, Operational research. Management science, Recherche opérationnelle et modèles formalisés de gestion, Operational research and scientific management, Théorie des jeux, Game theory, Algorithme évolutionniste, Evolutionary algorithm, Algoritmo evoluciónista, Analyse numérique, Numerical analysis, Análisis numérico, Equilibre Nash, Nash equilibrium, Equilibrio Nash, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Méthode optimisation, Optimization method, Método optimización, Optimisation PSO, Particle swarm optimization, Optimización PSO, Programmation mathématique, Mathematical programming, Programación matemática, Théorie jeu, Game theory, Teoría juego, 26XX, 49XX, 65Kxx, Evolution différentielle, Differential evolution, Stratégie évolution, Evolution strategy
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics, University of Patras Artificial Intelligence Center (UPAIRC), University ofPatras, 26110 Patras, Greece
ISSN:
0377-0427
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Operational research. Management
Accession Number:
edscal.16430732
Database:
PASCAL Archive

Further Information

Nash equilibrium constitutes a central solution concept in game theory. The task of detecting the Nash equilibria of a finite strategic game remains a challenging problem up-to-date. This paper investigates the effectiveness of three computational intelligence techniques, namely, covariance matrix adaptation evolution strategies, particle swarm optimization, as well as, differential evolution, to compute Nash equilibria of finite strategic games, as global minima of a real-valued, nonnegative function. An issue of particular interest is to detect more than one Nash equilibria of a game. The performance of the considered computational intelligence methods on this problem is investigated using multistart and deflection.