Result: A dynamical systems approach to the tilted Bianchi models of solvable type

Title:
A dynamical systems approach to the tilted Bianchi models of solvable type
Source:
Classical and quantum gravity (Print). 22(3):579-605
Publisher Information:
Bristol: Institute of Physics, 2005.
Publication Year:
2005
Physical Description:
print, 34 ref
Original Material:
INIST-CNRS
Subject Terms:
Theoretical physics, Physique théorique, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Generalites, General, Relativité générale et gravitation, General relativity and gravitation, Systèmes autogravitants; milieux continus et champs classiques en espace-temps courbe, Self-graviting systems; continuous media and classical fields in curved spacetime, Espace-temps d'einstein-maxwell, espace-temps avec fluides, rayonnement ou champs classiques, Einstein-maxwell spacetimes, spacetimes with fluids, radiation or classical fields, Terre, ocean, espace, Earth, ocean, space, Astronomie, Astronomy, Systèmes stellaires. Objets et systèmes galactiques et extragalactiques. L'univers, Stellar systems. Galactic and extragalactic objects and systems. The universe, Cosmologie, Cosmology, Cosmologie mathématique et relativiste. Cosmologie quantique, Mathematical and relativistic aspects of cosmology. Quantum cosmology, Bifurcation, Comportement asymptotique, Asymptotic behavior, Comportamiento asintótico, Cosmologie, Cosmology, Cycle limite, Limit cycles, Dynamique, Dynamics, Equation état, Equations of state, Fluide parfait, Perfect fluid, Fluido perfecto, Invariant, Invariante, Modèle Bianchi type V, Bianchi type V model, Modelo Bianchi tipo V, Modèle Bianchi, Bianchi model, Modelo Bianchi, Modèle homogène, Homogeneous model, Modelo homogéneo, Onde plane, Plane waves, Orbite, Orbits, Point équilibre, Equilibrium point, Punto equilibrio, Système dynamique, Dynamical systems, Tore, Tori
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, B3H 3J5, Canada
ISSN:
0264-9381
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Astronomy

Theoretical physics
Accession Number:
edscal.16450705
Database:
PASCAL Archive

Further Information

We use a dynamical systems approach to analyse the tilting spatially homogeneous Bianchi models of solvable type (e.g., types VIh and VIIh) with a perfect fluid and a linear barotropic γ-law equation of state. In particular, we study the late-time behaviour of tilted Bianchi models, with an emphasis on the existence of equilibrium points and their stability properties. We briefly discuss the tilting Bianchi type V models and the late-time asymptotic behaviour of irrotational Bianchi type VII0 models. We prove the important result that for non-inflationary Bianchi type VIIh models vacuum plane-wave solutions are the only future attracting equilibrium points in the Bianchi type VIIh invariant set. We then investigate the dynamics close to the plane-wave solutions in more detail, and discover some new features that arise in the dynamical behaviour of Bianchi cosmologies with the inclusion of tilt. We point out that in a tiny open set of parameter space in the type IV model (the loophole) there exist closed curves which act as attracting limit cycles. More interestingly, in the Bianchi type VIIh models there is a bifurcation in which a set of equilibrium points turns into closed orbits. There is a region in which both sets of closed curves coexist, and it appears that for the type VIIh models in this region the solution curves approach a compact surface which is topologically a torus.