Treffer: Solving SAT problems with TA algorithms using constant and dynamic markov chains length
ITESM, Campus Cuernavaca, Department of Computer Science, Av. Paseo de la Reforma 182-A, Col. Lomas de Cuernavaca C.P. 62589, Temixco Morelos, Mexico
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Operational research. Management
Weitere Informationen
Since the apparition of Simulated Annealing algorithm (SA) it has shown to be an efficient method to solve combinatorial optimization problems. Due to this, new algorithms based on two looped cycles (temperatures and Markov chain) have emerged, one of them have been called Threshold Accepting (TA). Classical algorithms based on TA usually use the same Markov chain length for each temperature cycle, these methods spend a lot of time at high temperatures where the Markov chain length is supposed to be small. In this paper we propose a method based on the neighborhood structure to get the Markov chain length in a dynamic way for each temperature cycle. We implemented two TA algorithms (classical or TACM and proposed or TADM) for SAT. Experimentation shows that the proposed method is more efficient than the classical one since it obtain the same quality of the final solution with less processing time.