Result: Solving SAT problems with TA algorithms using constant and dynamic markov chains length

Title:
Solving SAT problems with TA algorithms using constant and dynamic markov chains length
Source:
AAIM 2005 : algorithmic applications in management (Xian, 22-25 June 2005)Lecture notes in computer science. :281-290
Publisher Information:
Berlin: Springer, 2005.
Publication Year:
2005
Physical Description:
print, 24 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Recherche operationnelle. Gestion, Operational research. Management science, Recherche opérationnelle et modèles formalisés de gestion, Operational research and scientific management, Programmation mathématique, Mathematical programming, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Informatique théorique, Theoretical computing, Algorithmique. Calculabilité. Arithmétique ordinateur, Algorithmics. Computability. Computer arithmetics, Algorithmique, Algorithmics, Algorítmica, Chaîne Markov, Markov chain, Cadena Markov, Logique propositionnelle, Propositional logic, Lógica proposicional, Longueur chaîne, Chain length, Longitud cadena, Méthode combinatoire, Combinatorial method, Método combinatorio, Méthode optimisation, Optimization method, Método optimización, Optimisation combinatoire, Combinatorial optimization, Optimización combinatoria, Problème combinatoire, Combinatorial problem, Problema combinatorio, Problème satisfiabilité, Satisfiability problem, Problema satisfactibilidad, Programmation mathématique, Mathematical programming, Programación matemática, Qualité, Quality, Calidad, Recuit simulé, Simulated annealing, Recocido simulado, Résolution problème, Problem solving, Resolución problema, Satisfaction contrainte, Constraint satisfaction, Satisfaccion restricción, Seuil, Threshold, Umbral, Temps traitement, Processing time, Tiempo proceso
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
IMTA, Paseo Cuauhnáhuac 8532, Col. Progreso, C.P. 62550, Jiutepec Morelos, Mexico
ITESM, Campus Cuernavaca, Department of Computer Science, Av. Paseo de la Reforma 182-A, Col. Lomas de Cuernavaca C.P. 62589, Temixco Morelos, Mexico
ISSN:
0302-9743
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Operational research. Management
Accession Number:
edscal.16895791
Database:
PASCAL Archive

Further Information

Since the apparition of Simulated Annealing algorithm (SA) it has shown to be an efficient method to solve combinatorial optimization problems. Due to this, new algorithms based on two looped cycles (temperatures and Markov chain) have emerged, one of them have been called Threshold Accepting (TA). Classical algorithms based on TA usually use the same Markov chain length for each temperature cycle, these methods spend a lot of time at high temperatures where the Markov chain length is supposed to be small. In this paper we propose a method based on the neighborhood structure to get the Markov chain length in a dynamic way for each temperature cycle. We implemented two TA algorithms (classical or TACM and proposed or TADM) for SAT. Experimentation shows that the proposed method is more efficient than the classical one since it obtain the same quality of the final solution with less processing time.