Result: A new iterative procedure for the numerical solution of coefficient inverse problems
Title:
A new iterative procedure for the numerical solution of coefficient inverse problems
Authors:
Source:
6th IMACS International Symposium on Iterative Methods in Scientific ComputingApplied numerical mathematics. 54(2):280-291
Publisher Information:
Amsterdam: Elsevier, 2005.
Publication Year:
2005
Physical Description:
print, 20 ref
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Mechanics acoustics, Mécanique et acoustique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Optimisation et calcul variationnel numériques, Numerical methods in optimization and calculus of variations, Analyse numérique, Numerical analysis, Análisis numérico, Approximation successive, Successive approximation, Aproximación sucesiva, Champ magnétotellurique, Magnetotelluric field, Campo magnetotelúrico, Convergence, Convergencia, Convexité, Convexity, Convexidad, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Minimisation, Minimization, Minimización, Méthode itérative, Iterative method, Método iterativo, Méthode séquentielle, Sequential method, Método secuencial, Problème inverse, Inverse problem, Problema inverso, Convexification, Opérateur contractif, Contractive operator, Coefficient inverse problems, Convexification approach, Sequential minimization method, Strict convexity, Successive approximations
Document Type:
Conference
Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Mathematics, University of North Carolina at Charlotte, Charlotte, North Carolina, 28223-0001, United States
ISSN:
0168-9274
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.16907339
Database:
PASCAL Archive
Further Information
A new iterative procedure for the numerical solution of constrained minimization problems within the framework of the sequential minimization method is presented. The method allows the construction of strictly convex objective functionals and provides the global convergence on a correctness set. The proposed procedure utilizes the contraction property of a map resulted from applying the sequential minimization method to an original inverse problem. The feasibility of the iterative procedure is demonstrated in computational experiments with a model inverse problem of magnetotelluric sounding of layered media.