Result: A natural domain decomposition method with non-matching grids

Title:
A natural domain decomposition method with non-matching grids
Authors:
Source:
Selected papers from the 16th Chemnitz Finite Element Symposium 2003Applied numerical mathematics. 54(3-4):362-377
Publisher Information:
Amsterdam: Elsevier, 2005.
Publication Year:
2005
Physical Description:
print, 22 ref
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Mechanics acoustics, Mécanique et acoustique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Equations aux dérivées partielles, Partial differential equations, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Equations aux dérivées partielles, problèmes aux valeurs initiales et problèmes aux valeurs limites dépendant du temps, Partial differential equations, initial value problems and time-dependant initial-boundary value problems, Equations aux dérivées partielles, problèmes aux valeurs limites, Partial differential equations, boundary value problems, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Optimisation et calcul variationnel numériques, Numerical methods in optimization and calculus of variations, Analyse numérique, Numerical analysis, Análisis numérico, Décomposition domaine, Domain decomposition, Descomposición dominio, Equation dérivée partielle, Partial differential equation, Ecuación derivada parcial, Estimation erreur, Error estimation, Estimación error, Maillage, Grid pattern, Celdarada, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Multigrille, Multigrid, Multigrilla, Multiplicateur Lagrange, Lagrange multiplier, Multiplicador Lagrange, Méthode élément fini, Finite element method, Método elemento finito, Problème Dirichlet, Dirichlet problem, Problema Dirichlet, Problème Neumann, Neumann problem, Problema Neumann, Problème valeur initiale, Initial value problem, Problema valor inicial, Problème valeur limite, Boundary value problem, Problema valor limite, Stabilité numérique, Numerical stability, Estabilidad numérica, Triangulation, Triangulación, Discrétisation non appariement, Non matching discretization, Problème variationnel, Variational problem, Non-matching discretizations
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Universität Stuttgart, Institut für Angewandte Analysis und Numerische Simulation, Pfaffenwaldring 57, 70569 Stuttgart, Germany
ISSN:
0168-9274
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.16940504
Database:
PASCAL Archive

Further Information

In this paper a natural domain decomposition method based on local Dirichlet-Neumann maps is considered. The global variational problem is defined on the skeleton of the domain decomposition only. For the approximation of the Dirichlet-Neumann maps Dirichlet boundary value problems need to be solved locally. The local finite element spaces within the subdomains can be chosen independently of the global trial space on the skeleton. In particular, this approach can be used to couple non-matching triangulations across the interfaces without an additional framework such as introducing Lagrange multipliers. Numerical results for two model problems confirm the stability and error estimates given here.