Result: ON A DIPHASIC LOW MACH NUMBER SYSTEM

Title:
ON A DIPHASIC LOW MACH NUMBER SYSTEM
Source:
Low Mach number flowsModélisation mathématique et analyse numérique (Print). 39(3):487-514
Publisher Information:
Les Ulis: EDP Sciences, 2005.
Publication Year:
2005
Physical Description:
print, 30 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Commissariat à l'Énergie Atomique, 91191 Gif sur Yvette, France
Centre de Recherches Mathématiques, Université de Montréal, C.P. 6128-succursale Centre-ville, Montréal, H3C 3J7, Canada
ISSN:
0764-583X
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Physics: fluid mechanics
Accession Number:
edscal.16944291
Database:
PASCAL Archive

Further Information

We propose a Diphasic Low Mach Number (DLMN) system for the modelling of diphasic flows without phase change at low Mach number, system which is an extension of the system proposed by Majda in [Center of Pure and Applied Mathematics, Berkeley, report No. 112] and [Combust. Sci. Tech. 42 (1985) 185-205] for low Mach number combustion problems. This system is written for a priori any equations of state. Under minimal thermodynamic hypothesis which are satisfied by a large class of generalized van der Waals equations of state, we recover some natural properties related to the dilation and to the compression of bubbles. We also propose an entropic numerical scheme in Lagrangian coordinates when the geometry is monodimensional and when the two fluids are perfect gases. At last. we numerically show that the DLMN system may become ill-posed when the entropy of one of the two fluids is not a convex function.