Result: Calculation of low mach number acoustics : A comparison of MPV, EIF and linearized euler equations

Title:
Calculation of low mach number acoustics : A comparison of MPV, EIF and linearized euler equations
Source:
Low Mach number flowsModélisation mathématique et analyse numérique (Print). 39(3):561-576
Publisher Information:
Les Ulis: EDP Sciences, 2005.
Publication Year:
2005
Physical Description:
print, 20 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Mathematics, Mathématiques, Mechanics acoustics, Mécanique et acoustique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Equations aux dérivées partielles, Partial differential equations, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Equations aux dérivées partielles, problèmes aux valeurs initiales et problèmes aux valeurs limites dépendant du temps, Partial differential equations, initial value problems and time-dependant initial-boundary value problems, Equations aux dérivées partielles, problèmes aux valeurs limites, Partial differential equations, boundary value problems, Physique, Physics, Domaines classiques de la physique (y compris les applications), Fundamental areas of phenomenology (including applications), Mécanique des fluides, Fluid dynamics, Méthodes de calcul en mécanique des fluides, Computational methods in fluid dynamics, Analyse numérique, Numerical analysis, Análisis numérico, Approximation numérique, Numerical approximation, Aproximación numérica, Décomposition domaine, Domain decomposition, Descomposición dominio, Ecoulement incompressible, Incompressible flow, Equation Euler, Euler equation, Ecuación Euler, Equation Navier Stokes, Navier Stokes equation, Ecuación Navier Stokes, Equation Stokes, Stokes equation, Ecuación Stokes, Equation dérivée partielle, Partial differential equation, Ecuación derivada parcial, Equation linéaire, Linear equation, Ecuación lineal, Equation linéarisée, Linearized equation, Ecuación linearizada, Equation non linéaire, Non linear equation, Ecuación no lineal, Modèle mathématique, Mathematical model, Modelo matemático, Multigrille, Multigrid, Multigrilla, Nombre Mach, Mach number, Número Mach, Onde acoustique, Acoustic wave, Onda acústica, Problème valeur initiale, Initial value problem, Problema valor inicial, Problème valeur limite, Boundary value problem, Problema valor limite, EIF, MPV
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
High Performance Computing Center Stuttgart (HLRS), University of Stuttgart, Germany
Institute for Aerodynamics and Gasdynamics (TAG). University of Stuttgart, Germany
ISSN:
0764-583X
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Physics: fluid mechanics
Accession Number:
edscal.16944294
Database:
PASCAL Archive

Further Information

The calculation of sound generation and propagation in low Mach number flows requires serious reflections on the characteristics of the underlying equations. Although the compressible Euler/Navier-Stokes equations cover all effects, an approximation via standard compressible solvers does not have the ability to represent acoustic waves correctly. Therefore. different methods have been developed to deal with the problem. In this paper, three of them are considered and compared to each other. They are the Multiple Pressure Variables Approach (MPV), the Expansion about Incompressible Flow (EIF) and a coupling method via heterogeneous domain decomposition. In the latter approach. the non-linear Euler equations are used in a domain as small as possible to cover the sound generation. and the locally linearized Euler equations approximated with a high-order scheme are used in a second domain to deal with the sound propagation. Comparisons will be given in construction principles as well as implementational effort and computational costs on actual numerical examples.