Treffer: A scalable FETI-DP algorithm for a coercive variational inequality
Title:
A scalable FETI-DP algorithm for a coercive variational inequality
Authors:
Source:
Selected papers from the 16th Chemnitz Finite Element Symposium 2003Applied numerical mathematics. 54(3-4):378-390
Publisher Information:
Amsterdam: Elsevier, 2005.
Publication Year:
2005
Physical Description:
print, 37 ref
Original Material:
INIST-CNRS
Subject Terms:
Mathematics, Mathématiques, Mechanics acoustics, Mécanique et acoustique, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Optimisation et calcul variationnel numériques, Numerical methods in optimization and calculus of variations, Accélération convergence, Convergence acceleration, Aceleración convergencia, Algorithme optimal, Optimal algorithm, Algoritmo óptimo, Analyse numérique, Numerical analysis, Análisis numérico, Dualité, Duality, Dualidad, Indice conditionnement, Condition number, Numero de condicionamiento, Inégalité variationnelle, Variational inequality, Desigualdad variacional, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Méthode optimisation, Optimization method, Método optimización, Méthode primale duale, Primal dual method, Método primal dual, Programmation convexe, Convex programming, Programación convexa, Programmation mathématique, Mathematical programming, Programación matemática, Programmation quadratique, Quadratic programming, Programación cuadrática, Solution numérique, Numerical solution, Taux convergence, Convergence rate, Relación convergencia, Algorithme FETI DP, FETI DP algorithm
Document Type:
Konferenz
Conference Paper
File Description:
text
Language:
English
Author Affiliations:
FEI VSB-Technical University Ostrava, 70833 Ostrava, Czech Republic
Baruch College, City University of New York, NY 10010, United States
Baruch College, City University of New York, NY 10010, United States
ISSN:
0168-9274
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.16944753
Database:
PASCAL Archive
Weitere Informationen
We develop an optimal algorithm for the numerical solution of coercive variational inequalities, by combining FETI algorithms of dual-primal type with recent results for bound constrained quadratic programming problems. The discretized version of. the model problem, obtained by using the FETI-DP methodology, is reduced by the duality theory of convex optimization to a quadratic programming problem with bound constraints. The resulting problem is solved by a new algorithm with a known rate of convergence given in terms of the spectral condition number of the quadratic problem. We present convergence bounds that guarantee the scalability of the algorithm. These results are confirmed by numerical experiments.