Treffer: Why Delannoy numbers?

Title:
Why Delannoy numbers?
Source:
Special issue on lattice path combinatorics and discrete distributions (in memory of I. Vincze)Journal of statistical planning and inference. 135(1):40-54
Publisher Information:
Amsterdam; Lausanne; New York,NY: Elsevier Science, 2005.
Publication Year:
2005
Physical Description:
print, 2 p.1/2
Original Material:
INIST-CNRS
Subject Terms:
Document Type:
Konferenz Conference Paper
File Description:
text
Language:
English
Author Affiliations:
LIPN- UMR 7030 University Paris Nord. 99, Avenue J.-B. Clément, 93430 Villetaneuse, France
ISSN:
0378-3758
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Theoretical physics
Accession Number:
edscal.17042293
Database:
PASCAL Archive

Weitere Informationen

This article is not a research paper, but a little note on the history of combinatorics: we present here a tentative short biography of Henri Delannoy, and a survey of his most notable works. This answers the question raised in the title, as these works are related to lattice paths enumeration, to the so-called Delannoy numbers, and were the first general way to solve Ballot-like problems.