Result: Why Delannoy numbers?
Title:
Why Delannoy numbers?
Authors:
Source:
Special issue on lattice path combinatorics and discrete distributions (in memory of I. Vincze)Journal of statistical planning and inference. 135(1):40-54
Publisher Information:
Amsterdam; Lausanne; New York,NY: Elsevier Science, 2005.
Publication Year:
2005
Physical Description:
print, 2 p.1/2
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Combinatoire. Structures ordonnées, Combinatorics. Ordered structures, Combinatoire, Combinatorics, Problèmes combinatoires classiques, Classical combinatorial problems, Probabilités et statistiques, Probability and statistics, Théorie des probabilités et processus stochastiques, Probability theory and stochastic processes, Processus stochastiques, Stochastic processes, Physique, Physics, Generalites, General, Physique statistique, thermodynamique, et systèmes dynamiques non linéaires, Statistical physics, thermodynamics, and nonlinear dynamical systems, Fluctuations, processus stochastiques, bruit, et mouvement brownien, Fluctuation phenomena, random processes, noise, and brownian motion, Marches aléatoires et vols de lévy, Random walks and levy flights, Combinatoire, Combinatorics, Combinatoria, Décision statistique, Statistical decision, Decisión estadística, Enumération, Enumeration, Enumeración, Méthode statistique, Statistical method, Método estadístico, Sondage statistique, Sample survey, Ecuesta estadística, Treillis, Lattice, Enrejado, Problème Ballit, Ballot problem, 01A70, 05A10, 05A15, 60G50, 82C41 Lattice paths enumeration, Ballot problems
Document Type:
Conference
Conference Paper
File Description:
text
Language:
English
Author Affiliations:
LIPN- UMR 7030 University Paris Nord. 99, Avenue J.-B. Clément, 93430 Villetaneuse, France
ISSN:
0378-3758
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Theoretical physics
Theoretical physics
Accession Number:
edscal.17042293
Database:
PASCAL Archive
Further Information
This article is not a research paper, but a little note on the history of combinatorics: we present here a tentative short biography of Henri Delannoy, and a survey of his most notable works. This answers the question raised in the title, as these works are related to lattice paths enumeration, to the so-called Delannoy numbers, and were the first general way to solve Ballot-like problems.