Result: On the equivalence problem for succession rules

Title:
On the equivalence problem for succession rules
Source:
Formal power series and algebraic combinatorics 2002 (FPSAC'02)Discrete mathematics. 298(1-3):142-154
Publisher Information:
Amsterdam: Elsevier, 2005.
Publication Year:
2005
Physical Description:
print, 20 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
LaCIM, Université du Québec a Montréal, C.P. 8888 Succursale Centre-Ville, Montréal Qué., H3C 3P8, Canada
Dipartimento di Sistemi e Informatica, Via Lombroso 6/17, 50134 Firenze, Italy
Dipartimento di Matematica, Via del Capitano, 15, 53100 Siena, Italy
ISSN:
0012-365X
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.17064916
Database:
PASCAL Archive

Further Information

The notion of succession rule (system for short) provides a powerful tool for the enumeration of many classes of combinatorial objects. Often, different systems exist for a given class of combinatorial objects, and a number of problems arise naturally. An important one is the equivalence problem between two different systems. In this paper, we show how to solve this problem in the case of systems having a particular form. More precisely, using a bijective proof, we show that the classical system defining the sequence of Catalan numbers is equivalent to a system obtained by linear combinations of labels of the first one.