Result: Entropy production calculation for turbulent shear flows and their implementation in CFD codes

Title:
Entropy production calculation for turbulent shear flows and their implementation in CFD codes
Source:
Selected papers from the 3rd International Symposium on Advances in Computational Heat Transfer (CHT 04), Conference cruising on board the MS Midnatsol, down the Norwegian coast between Kirkenes and Bergen, June 2004International journal of heat and fluid flow. 26(4):672-680
Publisher Information:
New York, NY: Elsevier Science, 2005.
Publication Year:
2005
Physical Description:
print, 27 ref
Original Material:
INIST-CNRS
Subject Terms:
Energy, Énergie, Mechanics acoustics, Mécanique et acoustique, Physics, Physique, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Domaines classiques de la physique (y compris les applications), Fundamental areas of phenomenology (including applications), Mécanique des fluides, Fluid dynamics, Méthodes de calcul en mécanique des fluides, Computational methods in fluid dynamics, Ecoulements turbulents, convection et transfert de chaleur, Turbulent flows, convection, and heat transfer, Ecoulements cisaillés minces confinés, Wall-bounded thin shear flows, Sciences appliquees, Applied sciences, Energie, Energy, Energie. Utilisation thermique des combustibles, Energy. Thermal use of fuels, Dispositifs d'utilisation de l'énergie thermique, Devices using thermal energy, Echangeurs de chaleur (y compris transformateurs de chaleur, tours de refroidissement, condenseurs), Heat exchangers (included heat transformers, condensers, cooling towers), Boundary layer and shear turbulence, Code calcul, Computation code, Código computación, Conduite circulaire, Circular pipe, Conducto circular, Echangeur chaleur, Heat exchangers, Ecoulement cisaillé, Shear flow, Ecoulement turbulent, Turbulent flow, Entropie, Entropy, Forme torsadée, Twisted shape, Forma torcida, Insert, Mécanique fluide numérique, Computational fluid dynamics, Perte charge, Pressure drop, Simulation numérique, Digital simulation, Transfert chaleur, Heat transfer, Entropy production, Wall functions
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Technische Thermodynamik, TU Hamburg-Harburg, 21073 Hamburg, Germany
ISSN:
0142-727X
Rights:
Copyright 2005 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Energy

Physics: fluid mechanics
Accession Number:
edscal.17146546
Database:
PASCAL Archive

Further Information

Entropy production in turbulent shear flows with heat transfer is calculated locally and afterwards integrated over the whole flow domain. This quantity can serve as a parameter to determine the efficiency of turbulent heat transfer processes. Based on the time averaged entropy balance equation, four different mechanisms of entropy production can be identified and cast into mathematical equations. They are: dissipation in the mean and the fluctuating velocity fields and heat flux due to the mean and the fluctuating temperature fields. It turns out that no additional balance equation has to be solved, provided the turbulent dissipation rate is known in the flow field together with the mean velocity and temperature distribution. Since all four entropy production rates show very steep gradients close to the wall numerical solutions are far more effective with wall functions for the production terms. These wall functions are mandatory when high Reynolds number turbulent models are used, as for example the high Reynolds number k-ε model, like in our case. As an example, flow through a heated pipe with a twisted tape inserted is calculated in detail including the local entropy production rate.