Result: The impact of energy function structure on solving generalized assignment problem using hopfield neural network
Department of Mathematics, The University of Ahahra, Tehran, Iran, Islamic Republic of
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Operational research. Management
Further Information
In the last 20. years, neural networks researchers have exploited different penalty based energy functions structures for solving combinatorial optimization problems (COPs) and have established solutions that are stable and convergent. These solutions, however, have in general suffered from lack of feasibility and integrality. On the other hand, operational researchers have exploited different methods for converting a constrained optimization problem into an unconstrained optimization problem. In this paper we have investigated these methods for solving generalized assignment problems (GAPs). Our results concretely establishes that the augmented Lagrangean method can produce superior results with respect to feasibility and integrality, which are currently the main concerns in solving neural based COPs.