Result: Rapid combinatorial screening by synchrotron X-ray imaging
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Further Information
An X-ray imaging system, which does not require any scans of the sample or an X-ray beam and which, therefore, dramatically reduces the amount of time required, was employed to evaluate combinatorial libraries efficiently. Two-dimensional X-ray fluorescence (XRF) images of an 8 mm x 8 mm area were observed for combinatorial substrates of manganese-cobalt spinel MnCo2O4 and lithium ferrite LiFeO2 via an exposure time of 1-3 s using synchrotron X-rays. Thus, XRF signals from a whole substrate could be observed at once in a short space of time. In order to observe the chemical environment simultaneously for all materials arranged on the substrate, the fluorescent X-ray absorption fine structure (XAFS) was measured by repeating the imaging during the monochromator scans across the absorption edge for metals. This is extremely efficient because XAFS spectra for all materials placed on the common substrate are obtained from only a single energy scan. One can determine the valence numbers, as well as other aspects of the chemical environment of the metal included in each material, from the differences in spectral features and the energy shifts. Hence, combinatorial libraries can be screened very rapidly, and therefore efficiently, using the X-ray imaging system.