Result: Numerically stable and efficient algorithm for vector channel parameter and frequency offset estimation
Department of Media Technology, Seoul National University of Technology, Seoul, Korea, Republic of
UWB Wireless Communications Research Center (UWB-ITRC), Inha University, Korea, Republic of
Graduate School of Information Technology and Telecommunication, Inha University, Incheon, Korea, Republic of
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Telecommunications and information theory
Further Information
In this paper, we present a novel and numerically efficient algorithm for vector channel and calibration vector estimation, which works when frequency offset error caused by either unstable oscillator or Doppler effect is present in Spread Spectrum antenna system. We propose an estimation algorithm based on Gauss-Seidal algorithm rather than using eigen-decomposition or SVD in computing eigenvalues and eigenvectors at each iteration. The algorithm is based on the two-step procedures, one for estimating both channel and frequency offset and the other for estimating the unknown array gain and phase. Consequently, estimates of the DOAs, the multi-path impulse response of the reference signal source, and the carrier frequency offset as well as the calibration of antenna array are provided. The analytic performance improvement in multiplications number is presented. The performance of the proposed algorithm is investigated by means of computer simulations. Throughout the analytic and computer simulation, we show that the proposed algorithm reduces the number of multiplications by order of one.