Result: Improving the performance of the ALSTOM baseline controller using multiobjective optimisation : The second ALSTOM bechmark challenge on gasifier control

Title:
Improving the performance of the ALSTOM baseline controller using multiobjective optimisation : The second ALSTOM bechmark challenge on gasifier control
Authors:
Source:
IEE proceedings. Control theory and applications. 153(3):286-292
Publisher Information:
Stevenage: Institution of Electrical Engineers, 2006.
Publication Year:
2006
Physical Description:
print, 10 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
School of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
School of Electronics, University of Glamorgan, Pontypridd, Glamorgan CF37 1DL, United Kingdom
NCS Lab of CSU, Changsha, China
CIS Lab of CAS, Beijing, China
ISSN:
1350-2379
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Energy
Accession Number:
edscal.17779583
Database:
PASCAL Archive

Further Information

The authors present a multiobjective optimisation design approach to improve the performance of the ALSTOM Benchmark Challenge baseline controller. As the gasifier process is complex and non-linear, with a high degree of cross coupling of the variables, manual tuning of the controllers is difficult. The use of a multiobjective optimisation method allows the simultaneous tuning of multiple controllers, seeking a trade-off between the different performance objectives. A further example using the same multiobjective optimisation method shows how the performance of the baseline controller can be improved by the addition of extra proportional controllers to reduce the fluctuation due to a sine-wave pressure disturbance. This control structure is then simplified using a genetic algorithm search procedure, to find the structure with the lowest error.