Result: Centralized and distributed cooperative receding horizon control of autonomous vehicle missions

Title:
Centralized and distributed cooperative receding horizon control of autonomous vehicle missions
Source:
Optimization and Control for Military ApplicationsMathematical and computer modelling. 43(9-10):1208-1228
Publisher Information:
Oxford: Elsevier Science, 2006.
Publication Year:
2006
Physical Description:
print, 20 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Analyse mathématique, Mathematical analysis, Calcul des variations et contrôle optimal, Calculus of variations and optimal control, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Sciences appliquees, Applied sciences, Recherche operationnelle. Gestion, Operational research. Management science, Recherche opérationnelle et modèles formalisés de gestion, Operational research and scientific management, Optimisation. Problèmes de recherche, Optimization. Search problems, Algorithme réparti, Distributed algorithm, Algoritmo repartido, Analyse numérique, Numerical analysis, Análisis numérico, Calcul réparti, Distributed computing, Cálculo repartido, Commande répartie, Distributed control, Control repartido, Incertitude, Uncertainty, Incertidumbre, Intervalle temps, Time interval, Intervalo tiempo, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Optimisation, Optimization, Optimización, Planification, Planning, Planificación, Programmation mathématique, Mathematical programming, Programación matemática, Temps réel, Real time, Tiempo real, Trajectoire, Trajectory, Trayectoria, Véhicule, Vehicle, Vehículo, Champ potentiel, Potential field, Contrôle coopératif, Cooperative control, Horizon fuyant, Receding Horizon, Distributed computation
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Department of Manufacturing Engineering and Center for Information and Systems Engineering, Boston University, Brookline, MA 02446, United States
ISSN:
0895-7177
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics

Operational research. Management
Accession Number:
edscal.17796001
Database:
PASCAL Archive

Further Information

We consider a setting where multiple vehicles form a team cooperating to visit multiple target points and collect rewards associated with them. The team objective is to maximize the total reward accumulated over a given time interval. Complicating factors include uncertainties regarding the locations of target points and the effectiveness of collecting rewards, differences among vehicle capabilities, and the fact that rewards are time-varying. We present a Receding Horizon (RH) control scheme which dynamically determines vehicle trajectories by solving a sequence of optimization problems over a planning horizon and executing them over a shorter action horizon. A key property of this scheme is that the trajectories it generates are stationary, in the sense that they ultimately guide vehicles to target points, even though the controller is not designed to perform any discrete point assignments. The proposed scheme is centralized and it induces a cooperative behavior. We subsequently develop a distributed cooperative controller which does not require a vehicle to maintain perfect information on the entire team and whose computational cost is scalable and significantly lower than the centralized case, making it attractive for applications with real-time constraints. We include simulation-based comparisons between the centralized algorithm and the distributed version, which illustrate the effectiveness of the latter.