Result: Novel high fill-factor, small pitch, reticulated InSb IR FPA design
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Physics: optics
Further Information
The evolution of InSb Focal Plane Arrays (FPAs) at L-3 Communications Cincinnati Electronics (L-3 CE) has resulted in large format, high reliability, and high yields for 256x256, 640x512, 1Kx1K and even 2Kx2K formats using our patented front-side illuminated, reticulated pixel design. Baseline processes matured at 30um pitch and gradually were made producible at 25um pitch. Recent progress in process technology, specifically dry etch plasma processes and photolithography tools, has created a new set of processes/design capabilities which enable 15um pixel pitch FPAs, thus allowing us to develop a 15um pitch FPA with 4 times as many pixels, in the same foot print as the previous 30um pitch designs. We have developed a new 15um pitch, reticulated pixel design, implemented on a 512x512 format, which can then be sized into larger arrays, similar to the evolution that occurred on 30um pitch FPAs. As unit cell dimensions shrink by a factor of two, both the feature size and the alignment tolerances begin to limit optical fill factor. Addition of a novel micro-optic design, which optimizes signal collection to near 100% efficiency while maintaining near theoretical pixel MTF, will be presented.