Result: Computational methods for solving fully fuzzy linear systems

Title:
Computational methods for solving fully fuzzy linear systems
Source:
Applied mathematics and computation. 179(1):328-343
Publisher Information:
New York, NY: Elsevier, 2006.
Publication Year:
2006
Physical Description:
print, 26 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Computer science, Informatique, Mathematics, Mathématiques, Sciences exactes et technologie, Exact sciences and technology, Sciences et techniques communes, Sciences and techniques of general use, Mathematiques, Mathematics, Algèbre, Algebra, Algèbre linéaire et multilinéaire, matrices, Linear and multilinear algebra, matrix theory, Analyse numérique. Calcul scientifique, Numerical analysis. Scientific computation, Analyse numérique, Numerical analysis, Algèbre linéaire numérique, Numerical linear algebra, Méthodes numériques en programmation mathématique, optimisation et calcul variationnel, Numerical methods in mathematical programming, optimization and calculus of variations, Programmation mathématique numérique, Numerical methods in mathematical programming, Algèbre linéaire numérique, Numerical linear algebra, Algebra lineal numérica, Analyse numérique, Numerical analysis, Análisis numérico, Calcul matriciel, Matrix calculus, Cálculo de matrices, Conception ingénierie, Engineering design, Concepción ingeniería, Equation linéaire, Linear equation, Ecuación lineal, Incertitude, Uncertainty, Incertidumbre, Inversion matrice, Matrix inversion, Inversión matriz, Mathématiques appliquées, Applied mathematics, Matemáticas aplicadas, Matrice rectangulaire, Rectangular matrix, Matriz rectangular, Méthode directe, Direct method, Método directo, Méthode heuristique, Heuristic method, Método heurístico, Programmation linéaire, Linear programming, Programación lineal, Système complexe, Complex system, Sistema complejo, Système flou, Fuzzy system, Sistema difuso, Système linéaire, Linear system, Sistema lineal, Système surdéterminé, Overdetermined system, Valeur propre, Eigenvalue, Valor propio, Algorithme Doolittle, Doolittle algorithm, Arithmétique approximative floue, Fuzzy approximate arithmetic, Décomposition LU, Elimination Gauss, Opérateur approximation, Règle Cramer, Cramer's rule, Fully fuzzy linear system (FFLS), Fuzzy LU decomposition, Gaussian elimination, LR fuzzy number, Linear programming (LP), Over-determined fuzzy linear system of equations
Document Type:
Academic journal Article
File Description:
text
Language:
English
Author Affiliations:
Department of Applied Mathematics, Faculty of Mathematics and Computer Sciences, Amirkabir University of Technology, No. 424, Hafez Avenue, Tehran 15914, Iran, Islamic Republic of
ISSN:
0096-3003
Rights:
Copyright 2006 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Mathematics
Accession Number:
edscal.18084430
Database:
PASCAL Archive

Further Information

Since many real-world engineering systems are too complex to be defined in precise terms, imprecision is often involved in any engineering design process. Fuzzy systems have an essential role in this fuzzy modelling, which can formulate uncertainty in actual environment. In addition, this is an important sub-process in determining inverse, eigenvalue and some other useful matrix computations, too. One of the most practicable subjects in recent studies is based on LR fuzzy numbers, which are defined and used by Dubois and Prade with some useful and easy approximation arithmetic operators on them. Recently Dehghan et al. [M. Dehghan, M. Ghatee, B. Hashemi, Some computations on fuzzy matrices, submitted for publication.] extended some matrix computations on fuzzy matrices, where a fuzzy matrix appears as a rectangular array of fuzzy numbers. In continuation to our previous work, we focus on fuzzy systems in this paper. It is proved that finding all of the real solutions which satisfy in a system with interval coefficients is NP-hard. The same result can similarly be derived for fuzzy systems. So we employ some heuristics based methods on Dubois and Prade's approach, finding some positive fuzzy vector x which satisfies Ãx = b, where à and b are a fuzzy matrix and a fuzzy vector respectively. We propose some new methods to solve this system that are comparable to the well known methods such as the Cramer's rule, Gaussian elimination, LU decomposition method (Doolittle algorithm) and its simplification. Finally we extend a new method employing Linear Programming (LP) for solving square and non-square (over-determined) fuzzy systems. Some numerical examples clarify the ability of our heuristics.