Result: A novel approach for partitioning iteration spaces with variable densities
Intel Corporation, Santa Clara, CA, United States
Center for Supercomputing Research and Development University of Illinois at Urbana-Champaign, Urbana, IL, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Further Information
Efficient partitioning of parallel loops plays a critical role in high performance and efficient use of multiprocessor systems. Although a significant amount of work has been done in partitioning and scheduling of loops with rectangular iteration spaces, the problem of partitioning non-rectangular iteration spaces - e.g., triangular, trapezoidal iteration spaces - with variable densities has not been addressed so far to the best of our knowledge. In this paper, we present a mathematical model for partitioning N-dimensional non-rectangular iteration spaces with variable densities. We present a unimodular loop transformation and a geometric approach for partitioning an iteration space along an axis corresponding to the outermost loop across a given number of processors to achieve near-optimal performance, i.e., to achieve near-optimal load balance across different processors. We present a case study to illustrate the effectiveness of our approach.