Result: D-SCIDS : Distributed soft computing intrusion detection system
University of South Australia, Adelaide, Australia
Computer Science Department, Oklahoma State University, OK 74106, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Electronics
Telecommunications and information theory
Further Information
An Intrusion Detection System (IDS) is a program that analyzes what happens or has happened during an execution and tries to find indications that the computer has been misused. A Distributed IDS (DIDS) consists of several IDS over a large network (s), all of which communicate with each other, or with a central server that facilitates advanced network monitoring. In a distributed environment, DIDS are implemented using co-operative intelligent agents distributed across the network(s). This paper evaluates three fuzzy rule-based classifiers to detect intrusions in a network. Results are then compared with other machine learning techniques like decision trees, support vector machines and linear genetic programming. Further, we modeled Distributed Soft Computing-based IDS (D-SCIDS) as a combination of different classifiers to model lightweight and more accurate (heavy weight) IDS. Empirical results clearly show that soft computing approach could play a major role for intrusion detection.