Result: Redundancy allocation of series-parallel systems using a variable neighborhood search algorithm

Title:
Redundancy allocation of series-parallel systems using a variable neighborhood search algorithm
Source:
Selected papers presented at the Fourth International Conference on Quality and ReliabilityReliability engineering & systems safety. 92(3):323-331
Publisher Information:
Oxford: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 37 ref
Original Material:
INIST-CNRS
Subject Terms:
Control theory, operational research, Automatique, recherche opérationnelle, Energy, Énergie, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Recherche operationnelle. Gestion, Operational research. Management science, Recherche opérationnelle et modèles formalisés de gestion, Operational research and scientific management, Flots dans les réseaux. Problèmes combinatoires, Flows in networks. Combinatorial problems, Théorie de la fiabilité. Renouvellement des équipements, Reliability theory. Replacement problems, Algorithme génétique, Genetic algorithm, Algoritmo genético, Algorithme recherche, Search algorithm, Algoritmo búsqueda, Fiabilité, Reliability, Fiabilidad, Fonction potentiel, Potential function, Función potencial, Méthode combinatoire, Combinatorial method, Método combinatorio, Méthode descente, Descent method, Método descenso, Méthode heuristique, Heuristic method, Método heurístico, Optimisation combinatoire, Combinatorial optimization, Optimización combinatoria, Optimisation essaim particule, Swarm intelligence, Optimización enjambre partícula, Parallélisme, Parallelism, Paralelismo, Problème NP difficile, NP hard problem, Problema NP duro, Problème combinatoire, Combinatorial problem, Problema combinatorio, Recherche tabou, Tabu search, Búsqueda tabú, Redondance, Redundancy, Redundancia, Régime variable, Variable conditions, Régimen variable, Système série, Series system, Sistema serie, Redundancy allocation problem, Series-parallel system, Variable neighborhood search
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Industrial Engineering and Management, Yuan Ze University, No 135 Yuan-Tung Road, Chung-Li, Taoyuan County, 320, Tawain, Province of China
ISSN:
0951-8320
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Operational research. Management
Accession Number:
edscal.18411680
Database:
PASCAL Archive

Further Information

This paper presents a meta-heuristic algorithm, variable neighborhood search (VNS), to the redundancy allocation problem (RAP). The RAP, an NP-hard problem, has attracted the attention of much prior research, generally in a restricted form where each subsystem must consist of identical components. The newer meta-heuristic methods overcome this limitation and offer a practical way to solve large instances of the relaxed RAP where different components can be used in parallel. Authors' previously published work has shown promise for the variable neighborhood descent (VND) method, the simplest version among VNS variations, on RAP. The variable neighborhood search method itself has not been used in reliability design, yet it is a method that fits those combinatorial problems with potential neighborhood structures, as in the case of the RAP. Therefore, authors further extended their work to develop a VNS algorithm for the RAP and tested a set of well-known benchmark problems from the literature. Results on 33 test instances ranging from less to severely constrained conditions show that the variable neighborhood search method improves the performance of VND and provides a competitive solution quality at economically computational expense in comparison with the best-known heuristics including ant colony optimization, genetic algorithm, and tabu search.