Result: Thermo-mechanical evolution of multilayer thin films: Part I. Mechanical behavior of Au/Cr/Si microcantilevers

Title:
Thermo-mechanical evolution of multilayer thin films: Part I. Mechanical behavior of Au/Cr/Si microcantilevers
Source:
Proceedings of the TMS Symposium - Mechanical Behaviour of Thin Films and Small Structures, San Francisco, California, February 13-17, 2005Thin solid films. 515(6):3208-3223
Publisher Information:
Lausanne: Elsevier Science, 2007.
Publication Year:
2007
Physical Description:
print, 58 ref
Original Material:
INIST-CNRS
Subject Terms:
Crystallography, Cristallographie cristallogenèse, Electronics, Electronique, Metallurgy, welding, Métallurgie, soudage, Condensed state physics, Physique de l'état condensé, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Generalites, General, Instruments, appareillage, composants et techniques communs à plusieurs branches de la physique et de l'astronomie, Instruments, apparatus, components and techniques common to several branches of physics and astronomy, Techniques, équipements et instruments mécaniques, Mechanical instruments, equipment and techniques, Instrumentation pour déformation, force et couple, Instruments for strain, force and torque, Etat condense: structure, proprietes mecaniques et thermiques, Condensed matter: structure, mechanical and thermal properties, Surfaces et interfaces; couches minces et trichites (structure et propriétés non électroniques), Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties), Structure et morphologie de couches minces, Thin film structure and morphology, Structure et morphologie; épaisseur, Structure and morphology; thickness, Propriétés physiques non électroniques de couches minces, Physical properties of thin films, nonelectronic, Propriétés mécaniques et acoustiques, Mechanical and acoustical properties, Sciences appliquees, Applied sciences, Electronique, Electronics, Electronique des semiconducteurs. Microélectronique. Optoélectronique. Dispositifs à l'état solide, Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices, Dispositifs micro- et nanoélectromécaniques (mems/nems), Micro- and nanoelectromechanical devices (mems/nems), Alumine, Alumina, Alúmina, Aluminium oxyde, Aluminium oxide, Aluminio óxido, Analyse contrainte, Stress analysis, Análisis tensión, Atmosphère contrôlée, Controlled atmosphere, Atmósfera controlada, Chrome, Chromium, Cromo, Contrainte interne, Internal stress, Tensión interna, Couche mince métallique, Metallic thin films, Couche mince, Thin film, Capa fina, Courbure, Curvature, Curvatura, Dispositif microélectromécanique, Microelectromechanical device, Dispositivo microelectromecánico, Dépendance température, Temperature dependence, Effet contrainte, Stress effects, Effet dimensionnel, Size effect, Efecto dimensional, Elasticité, Elasticity, Elasticidad, Matériau amorphe hydrogéné, Amorphous hydrogenated material, Material amorfo hidrogenado, Microstructure, Microestructura, Multicouche, Multiple layer, Capa múltiple, Or, Gold, Oro, Propriété mécanique, Mechanical properties, Propiedad mecánica, Recuit thermique, Thermal annealing, Recocido térmico, Revêtement, Coatings, Revestimiento, Silicium, Silicon, Silicio, 0710P, 6855J, 6860B, Al2O3, Si, a-C:H, Curvature evolution, Internal stress evolution, Passivation coating, Thin metal films
Time:
8585
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, United States
Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, United States
Lehrstuhl für Werkstoffkunde (Materials Science), University of Paderborn, 33095 Paderborn, Germany
School of materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
ISSN:
0040-6090
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Electronics

Metrology

Physics of condensed state: structure, mechanical and thermal properties
Accession Number:
edscal.18511393
Database:
PASCAL Archive

Further Information

MEMS microcantilever test structures were utilized to examine the microstructural evolution of Au/Cr/Si thin films subject to annealing. Curvature evolution of the micron-sized structures was measured in response to anneals at various times and temperatures. Particular emphasis was placed on the accelerated annealing condition of 225 °C for 24h. The thermo-mechanical response of the microcantilevers consisted of both linear-elastic and inelastic regimes. The temperature at which the thermo-mechanical profile deviates from linear thermo-elasticity is influenced by the stress, curvature and/or the microstructure of the specimens. Stress analysis suggests that microstructural evolution, not plastic yielding, controls the inelastic portion of the thermo-mechanical profile. Maximum stress increases of 146.3 and 202.9MPa (i.e. 500% relative to the as-deposited state) were observed in the gold layer of the microcantilevers of different silicon thickness, as the result of the inelastic strain at elevated temperature. Increasingly greater curvature change is observed for specimens as annealing temperature is increased up to 150°C, whereas the magnitude of curvature change is diminished as annealing temperature is increased above 150°C. A complex curvature evolution is observed at 225 °C over a 24-h timeframe. Curvature evolution during isothermal hold occurs in response to the development of intrinsic stress within the metals. Use of a nitrogen atmosphere or nano-thickness alumina surface coatings was seen to alter the stability of the curvature evolution at 225°C. The critical thickness for a protective alumina passivation occurs between 6.5 and 32.5nm. Thermo-mechanical behavior is discussed here, while the corresponding microstructural evolution is discussed in the second part of this paper.