Result: Designing cellular networks using a parallel hybrid metaheuristic on the computational grid

Title:
Designing cellular networks using a parallel hybrid metaheuristic on the computational grid
Source:
Computer communications. 30(4):698-713
Publisher Information:
Amsterdam; New York, NY; Tokyo: Elsevier Science, 2007.
Publication Year:
2007
Physical Description:
print, 41 ref
Original Material:
INIST-CNRS
Subject Terms:
Computer science, Informatique, Telecommunications, Télécommunications, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Informatique; automatique theorique; systemes, Computer science; control theory; systems, Logiciel, Software, Systèmes informatiques et systèmes répartis. Interface utilisateur, Computer systems and distributed systems. User interface, Algorithme génétique, Genetic algorithm, Algoritmo genético, Algorithme parallèle, Parallel algorithm, Algoritmo paralelo, Analyse multirésolution, Multiresolution analysis, Análisis multiresolución, Calcul réparti, Distributed computing, Cálculo repartido, Diversification, Diversificación, Extensibilité, Scalability, Estensibilidad, Grille, Grid, Rejilla, Haute performance, High performance, Alto rendimiento, Informatique mobile, Mobile computing, Mise à jour, Updating, Actualización, Modèle hybride, Hybrid model, Modelo híbrido, Modélisation, Modeling, Modelización, Méthode heuristique, Heuristic method, Método heurístico, Méthode optimisation, Optimization method, Método optimización, Optimisation combinatoire, Combinatorial optimization, Optimización combinatoria, Optimisation sous contrainte, Constrained optimization, Optimización con restricción, Optimum Pareto, Pareto optimum, Optimo Pareto, Parallélisme, Parallelism, Paralelismo, Problème combinatoire, Combinatorial problem, Problema combinatorio, Programmation mathématique, Mathematical programming, Programación matemática, Programmation multiobjectif, Multiobjective programming, Programación multiobjetivo, Radiocommunication, Radio communication, Radiocomunicación, Radiotéléphonie cellulaire, Cellular radio, Robustesse, Robustness, Robustez, Réseau cellulaire, Cell network, Red celular, Réseau radio, Radio networks, Système modulaire, Modular system, Sistema modular, Système réparti, Distributed system, Sistema repartido, Cellular network design, Grid computing, Hybrid metaheuristics, Metaheuristics, Parallel computing
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
CNRSILIFL and INRIA, University of Lille, 59655 Villeneuve d'Ascq, France
ISSN:
0140-3664
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.18529347
Database:
PASCAL Archive

Further Information

Cellular network design is a major issue in mobile telecommunication systems. In this paper, a model of the problem in its full practical complexity, based on multiobjective constrained combinatorial optimization, has been investigated. We adopted the Pareto approach at resolution in order to compute a set of diversified non-dominated networks, thus removing the need for the designer to rank or weight objectives a priori. We designed and implemented a ready-to-use platform for radio network optimization that is flexible regarding both the modeling of the problem (adding, removing, updating new antagonist objectives and constraints) and the solution methods. It extends the white-box ParadisEO framework for metaheuristics applied to the resolution of mono/multi-objective Combinatorial Optimization Problems requiring both the use of advanced optimization methods and the exploitation of large-scale parallel and distributed environments. Specific coding scheme and genetic and neighborhood operators have been designed and embedded. On the other side, we make use of many generic features related to advanced intensification and diversification search techniques, hybridization of metaheuristics and grid computing for the distribution of the computations. They aim at improving the quality of networks and their robustness. They also allow, to speed-up the search and obtain results in a tractable time, and so efficiently solving large instances of the problem. Using three realistic benchmarks, the computed networks and speed-ups on different parallel and/or distributed architectures show the efficiency and the scalability of hierarchical parallel hybrid models.