Result: An infeasible primal-dual algorithm for total bounded variation-based inf-convolution-type image restoration
Institut fur Mathematik und Wissenschaftliches Rechnen, Karl -Franzens -Universität Graz, Hein richstraße 36, 8010 Graz, Austria
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Telecommunications and information theory
Further Information
In this paper, a primal-dual algorithm for total bounded variation (TV)-type image restoration is analyzed and tested. Analytically it turns out that employing a global Ls-regularization, with 1 < s < 2, in the dual problem results in a local smoothing of the TV-regularization term in the primal problem. The local smoothing can alternatively be obtained as the infimal convolution of the ℓr-norm, with r-1 + s-1 = 1, and a smooth function. In the case r = s = 2, this results in Gauss-TV-type image restoration. The globalized primal-dual algorithm introduced in this paper works with generalized derivatives, converges locally at a superlinear rate, and is stable with respect to noise in the data. In addition, it utilizes a projection technique which reduces the size of the linear system that has to be solved per iteration. A comprehensive numerical study ends the paper.