Result: Threading dislocations in heteroepitaxial AlN layer grown by MOVPE on SiC (0001) substrate

Title:
Threading dislocations in heteroepitaxial AlN layer grown by MOVPE on SiC (0001) substrate
Source:
Thirteenth International Conference on Metal Organic Vapor Phase Epitaxy (ICMOVPE-XIII), Phoenix Seagaia Resort, Miyazaki, 22-26 May 2006Journal of crystal growth. 298:310-315
Publisher Information:
Amsterdam: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 14 ref
Original Material:
INIST-CNRS
Subject Terms:
Crystallography, Cristallographie cristallogenèse, Geology, Géologie, Metallurgy, welding, Métallurgie, soudage, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Etat condense: structure, proprietes mecaniques et thermiques, Condensed matter: structure, mechanical and thermal properties, Structure des liquides et des solides; cristallographie, Structure of solids and liquids; crystallography, Défauts et impuretés dans les cristaux; microstructure, Defects and impurities in crystals; microstructure, Défauts linéaires: dislocations, disinclinaisons, Linear defects: dislocations, disclinations, Domaines interdisciplinaires: science des materiaux; rheologie, Cross-disciplinary physics: materials science; rheology, Science des matériaux, Materials science, Matériaux particuliers, Specific materials, Autres semiconducteurs, Other semiconductors, Méthodes de dépôt de films et de revêtements; croissance de films et épitaxie, Methods of deposition of films and coatings; film growth and epitaxy, Théorie et modèles de la croissance de films, Theory and models of film growth, Epitaxie en phase vapeur; croissance en phase vapeur, Vapor phase epitaxy; growth from vapor phase, Aluminium nitrure, Aluminium nitrides, Coefficient Poisson, Poisson ratio, Composé III-V, III-V compound, Compuesto III-V, Composé minéral, Inorganic compounds, Contrainte traction, Tensile stress, Tensión traccíon, Densité dislocation, Dislocation density, Densité élevée, High density, Densidad elevada, Diffraction RX, XRD, Déformation résiduelle, Residual strain, Deformación residual, Epaisseur couche, Layer thickness, Espesor capa, Epitaxie phase vapeur, VPE, Hétéroépitaxie, Heteroepitaxy, Heteroepitaxia, Mécanisme croissance, Growth mechanism, Mecanismo crecimiento, Mécanisme formation, Formation mechanism, Mecanismo formacion, Méthode MOVPE, MOVPE method, Método MOVPE, Nitrure, Nitrides, Propriété mécanique, Mechanical properties, Semiconducteur III-V, III-V semiconductors, 6172L, 6855A, 8105E, 8115K, AlN, Dislocation filetée, Threading dislocation, Substrat SiC, A3. Metalorganic vapor phase epitaxy, Al. X-ray diffraction, Bl. Nitrides
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi 243-0198, Japan
ISSN:
0022-0248
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Physics and materials science

Physics of condensed state: structure, mechanical and thermal properties
Accession Number:
edscal.18578753
Database:
PASCAL Archive

Further Information

To clarify the mechanisms governing the formation and reduction of threading dislocations (TDs) in aluminum nitride (AlN) layers grown on SiC (0001) substrates by metalorganic vapor phase epitaxy (MOVPE), we characterized the mosaicity and the growth mode. High-density (∼1011 cm-2) three-dimensional (3D) AlN islands nucleate on the substrate. Because the islands are slightly misoriented with respect to each other, dislocations are generated with a high density of 1010-1011 cm-2 as the islands coalesce. However, most of the dislocations are annihilated because their propagation direction changes horizontally during the island growth. Thus, at the initial growth stage, the dislocation density is drastically decreased to 108-109 cm-2. Consequently, as the layer thickness increases, the defect-free region becomes larger and the misorientation becomes smaller. On the other hand, we found that the TDs induce a large tensile strain and that the residual strain decreases with decreasing dislocation density. From the relationship between a- and c-lattice strains, the Poisson ratio of AlN was determined to be 0.19.