Result: Multiresolution morphing for planar curves

Title:
Multiresolution morphing for planar curves
Source:
Special issue on geometric modeling (Dagstuhl 2005)Computing (Wien. Print). 79(2-4):197-209
Publisher Information:
Wien: Springer, 2007.
Publication Year:
2007
Physical Description:
print, 21 ref
Original Material:
INIST-CNRS
Subject Terms:
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Laboratoire Jean Kuntzmann Institut National Polytechnique de Grenoble B.P. 53, 38041 Grenoble, France
Laboratoire Jean Kuntzmann Univeristé Joseph Fourier INRIA Rhône-Alpes 655 avenue de l'Europe Montbonnot, 38334 Saint Ismier, France
ISSN:
0010-485X
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.18791830
Database:
PASCAL Archive

Further Information

We present a multiresolution morphing algorithm using as-rigid-as-possible shape interpolation combined with an angle-length based multiresolution decomposition of simple 2D piecewise curves. This novel multiresolution representation is defined intrinsically and has the advantage that the details' orientation follows any deformation naturally. The multiresolution morphing algorithm consists of transforming separately the coarse and detail coefficients of the multiresolution decomposition. Thus all LoD (level of detail) applications like LoD display, compression, LoD editing etc. can be applied directly to all morphs without any extra computation. Furthermore, the algorithm can robustly morph between very large size polygons with many local details as illustrated in numerous figures. The intermediate morphs behave natural and least-distorting due to the particular intrinsic multiresolution representation.