Result: Overlay as the key to drive wafer scale 3D integration

Title:
Overlay as the key to drive wafer scale 3D integration
Source:
Proceedings of the 32nd International Conference on Micro- and Nano-Engineering, Barcelona, 17-20 September 2006Microelectronic engineering. 84(5-8):1412-1415
Publisher Information:
Amsterdam: Elsevier Science, 2007.
Publication Year:
2007
Physical Description:
print, 15 ref
Original Material:
INIST-CNRS
Subject Terms:
Electronics, Electronique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Electronique, Electronics, Electronique des semiconducteurs. Microélectronique. Optoélectronique. Dispositifs à l'état solide, Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices, Circuits intégrés, Integrated circuits, Conception. Technologies. Analyse fonctionnement. Essais, Design. Technologies. Operation analysis. Testing, Fabrication microélectronique (technologie des matériaux et des surfaces), Microelectronic fabrication (materials and surfaces technology), Apprentissage, Learning, Aprendizaje, Circuit intégré, Integrated circuit, Circuito integrado, Commande processus, Process control, Control proceso, Composant actif, Active component, Componente activo, Couche active, Active layer, Capa activa, Défaut alignement, Alignment defect, Defecto alineación, Fabrication microélectronique, Microelectronic fabrication, Fabricación microeléctrica, Fixation pastille, Wafer bonding, Fijación pastilla, Interconnexion, Interconnection, Interconexión, Intégration sur plaquette, Wafer-scale integration, Liaison métallique, Metallic bond, Enlace metálico, Ligne contact, Contact line, Línea contacto, Lithographie, Lithography, Litografía, Multicouche, Multiple layer, Capa múltiple, Méthode contrôle, Control method, Método control, Structure 3 dimensions, Three dimensional structure, Estructura 3 dimensiones, Technologie silicium sur isolant, Silicon on insulator technology, Tecnología silicio sobre aislante, 3D integration, 3DIC, Alignment, Oxide fusion bonding
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, United States
IBM Systems and Technology Group, 2070 Route 52, Hopewell Junction, NY 12533, United States
IBM Systems and Technology Group, 294 Route 100, Somers, NY 10589, United States
ISSN:
0167-9317
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Electronics
Accession Number:
edscal.18807457
Database:
PASCAL Archive

Further Information

3D integration is the stacking of multiple active device layers (with or without interconnecting metal lines) to form a more complex integrated circuit or to provide a new architectural venue. There are many different techniques to accomplish the stacking of the active layers, ranging from packing solutions through wafer bonding, to regrowth of Silicon films. We utilized an aligned SOI wafer bonding method that allows very high alignment accuracy to achieve very dense 3D interconnections. However, wafer bonding tools currently do not have the capability to achieve better than 100 nm overlay error (3 sigma). This limits the highest density we can achieve in a 3D design due to the large landing area that is required to yield the 3D vias, reducing the areal benefit and thus worsening yields. Hence, in this work we will discuss key issues that prevent better than 100 nm 3 sigma alignment between the two substrates. We show that controlled process integration enables significant reduction of the alignment errors between two substrates. The second part of the paper details 3D bonder re-engineering solutions to achieve an order of magnitude improvement in alignment accuracy and drive the full potential of 3DIC. More specifically, inclusion of the learning achieved from lithographic technology, as well as specific bonding process control methods are discussed.