Result: Letter frequency in infinite repetition-free words

Title:
Letter frequency in infinite repetition-free words
Authors:
Source:
Combinatorics on wordsTheoretical computer science. 380(3):388-392
Publisher Information:
Amsterdam: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 19 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
LaBRI, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence, France
ISSN:
0304-3975
Rights:
Copyright 2008 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.18831180
Database:
PASCAL Archive

Further Information

We estimate the extremal letter frequency in infinite words over a finite alphabet avoiding some repetitions. For ternary square-free words, we improve the bounds of Tarannikov on the minimal letter frequency, and prove that the maximal letter frequency is 255. Kolpakov et al. have studied the function p such that p(x) is the minimal letter frequency in an infinite binary x-free word. In particular, they have shown that p is discontinuous at 7/3 and at every integer at least 3. We answer one of their questions by providing some other points of discontinuity for p. Finally, we propose stronger versions of Dejean's conjecture on repetition threshold in which unequal letter frequencies are required.