Result: Subsonic slip waves and steady sliding at the interface between two anisotropic elastic half-spaces in frictional contact with stick-slip

Title:
Subsonic slip waves and steady sliding at the interface between two anisotropic elastic half-spaces in frictional contact with stick-slip
Source:
Selected papers presented at the International Symposium on Mechanical Waves in SolidsWave motion. 44(6):439-457
Publisher Information:
Amsterdam: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 26 ref
Original Material:
INIST-CNRS
Subject Terms:
Mechanics acoustics, Mécanique et acoustique, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Domaines classiques de la physique (y compris les applications), Fundamental areas of phenomenology (including applications), Acoustique, Acoustics, Acoustique des structures et vibration, Structural acoustics and vibration, Mécanique des solides, Solid mechanics, Mécanique des structures et des milieux continus, Structural and continuum mechanics, Elasticité statique (thermoélasticité...), Static elasticity (thermoelasticity...), Vibration, onde mécanique, stabilité dynamique (aéroélasticité, contrôle vibration...), Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...), Contact mécanique (frottement...), Mechanical contact (friction...), Analyse structurale, Structural analysis, Análisis estructural, Bande glissement, Slip band, Banda deslizamiento, Broutement, Stick slip, Deslizamiento a tirones, Cisaillage, Shearing, Cizalladura, Contact mécanique, Mechanical contact, Contacto mecánico, Demi espace élastique, Elastic half space, Semiespacio elástico, Déformation antiplane, Antiplane strain, Deformación antiplano, Equation intégrale, Integral equation, Ecuación integral, Equation singulière, Singular equation, Ecuación singular, Formalisme Stroh, Stroh formalism, Formalismo Stroh, Frottement glissement, Sliding friction, Frotamiento deslizamiento, Impédance surface, Surface impedance, Impedancia superficie, Interface solide solide, Solid solid interface, Interfase sólido sólido, Matériau anisotrope, Anisotropic material, Material anisótropo, Modélisation, Modeling, Modelización, Onde élastique, Elastic wave, Onda elástica, Problème valeur limite, Boundary value problem, Problema valor limite, Singularité, Singularity, Singularidad, Symétrie plane, Plane symmetry, Simetría plana, Anisotropic elasticity, Frictional contact, Interface, Slip wave, Steady sliding, Stick-slip
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Institute of Engineering Mechanics, Beijing Jiuotong University, Beijing 100044, China
ISSN:
0165-2125
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Physics: acoustics

Physics: solid mechanics
Accession Number:
edscal.18892788
Database:
PASCAL Archive

Further Information

The theoretical study is presented on the existence and behaviors of slip waves along a frictionally contact interface between two similar or dissimilar anisotropic solids which are pressed together by remote pressure and meanwhile sheared by remote shearing traction. We consider the wave motion in a symmetry plane perpendicular to the interface and thus the in-pane motion is uncoupled with the anti-plane motion. The external loads may or may not lead to steady rigid sliding between two solids, while the separation of the interface is excluded by assuming the applied pressure is large enough. The local stick-slip motion without local separation at the frictionally contact interface caused by the perturbed slip waves is studied. The Stroh formalism, together with the concept of the surface impedance tensor is employed. The boundary value problem involving unknown slip/stick zones is cast to a Hilbert singular integral equation with an unknown integral interval. The explicit solutions representing the slip waves are obtained. The existence and behaviors of such slip waves are discussed based on theoretical and numerical analysis. For the case of no initial steady sliding between two solids (i.e., the applied shearing traction is lower than the interface friction force), slip waves which are singular at one end of the slip zone may propagate. For the case of initial steady sliding (i.e., the applied shearing traction can break the interface friction), no such slip waves exist.