Result: Statistical placement for FPGAs considering process variation
Altera Corporation, San Jose, CA 95134, United States
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Further Information
Process variations affecting timing and power is an important issue for modem integrated circuits in nanometre technologies. Field programmable gate arrays (FPGA) are similar to application-specific integrated circuit (ASIC) in their susceptibility to these issues, but face unique challenges in that critical paths are unknown at test time. The first in-depth study on applying statistical timing analysis with cross-chip and on-chip variations to speed-binning and guard-banding in FPGAs has been presented. Considering the uniqueness of re-programmability in FPGAs, the effects of timing-model with guard-banding and speed-binning on statistical performance and timing yield are quantified. A new variation aware statistical placement, which is the first statistical algorithm for FPGA layout and achieves a yield loss of 29.7% of the original yield loss with guard-banding and a yield loss of 4% of the original one with speed-binning for Microelectronics Center of North Carolina (MCNC) and Quartus University Interface Program (QUIP) designs, has also been developed.