Result: Exploiting partial knowledge of satisfying assignments
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Mathematics
Further Information
Recently Schoning has shown that a simple local-search algorithm for 3SAT achieves the currently best upper bound, i.e., an expected time of 1.334. In this paper, we show that this algorithm can be modified to run much faster if there is some kind of imbalance in satisfying assignments and we have a (partial) knowledge about that. Especially if a satisfying assignment has imbalanced 0's and 1's, i.e., pin 1's and (1 - p1)n 0's, then we can find a solution in time 1.260 when p1 = 1 3 and 1.072 when p1 =0.1. Such an imbalance often exists in SAT instances reduced from other problems. As a concrete example, we investigate a reduction from 3DM and show our new approach is nontrivially faster than its direct algorithms. Preliminary experimental results are also given.