Result: Visualizing transport properties in IBAD based YBCO coated conductors by multiple analysis techniques

Title:
Visualizing transport properties in IBAD based YBCO coated conductors by multiple analysis techniques
Source:
The 2006 applied superconductivity conference, Seattle, WA, August 27-September 1, 2006. Part III of three partsIEEE transactions on applied superconductivity. 17(2):3211-3214
Publisher Information:
New York, NY: Institute of Electrical and Electronics Engineers, 2007.
Publication Year:
2007
Physical Description:
print, 15 ref 3
Original Material:
INIST-CNRS
Subject Terms:
Electronics, Electronique, Electrical engineering, Electrotechnique, Sciences exactes et technologie, Exact sciences and technology, Sciences appliquees, Applied sciences, Electronique, Electronics, Electronique des semiconducteurs. Microélectronique. Optoélectronique. Dispositifs à l'état solide, Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices, Dispositifs supraconducteurs, Superconducting devices, Electrotechnique. Electroenergetique, Electrical engineering. Electrical power engineering, Matériaux, Materials, Appareillage de connexion et de protection, Connection and protection apparatus, Matériel électrique divers, Various equipment and components, Eléments de connexion. Câblage. Filerie, Electric connection. Cables. Wiring, Assistance ordinateur, Computer aid, Asistencia ordenador, Bande supraconductrice, Superconducting tapes, Basse température, Low temperature, Baja temperatura, Conducteur électrique, Electrical conductor, Conductor eléctrico, Dispositif supraconducteur quantique, Superconducting quantum interferometer device, Dispositivo supraconductor cuántico, Dépôt bombardement ionique, Ion beam coating, Revestimiento bombardeo iónico, Dépôt laser pulsé, Pulsed laser deposition, Dépôt physique phase vapeur, Physical vapor deposition, Deposición física fase vapor, Ecoulement flux, Flux flow, Salida flujo, Effet Seebeck, Seebeck effect, Efecto Seebeck, Fabrication microélectronique, Microelectronic fabrication, Fabricación microeléctrica, Formation image, Imaging, Formación imagen, Limiteur courant, Current limiter, Limitador corriente, Matériau revêtu, Coated material, Material revestido, Microscope balayage, Scanning microscope, Microscopio barrido, Microscope laser, Laser microscope, Microscopio láser, Méthode IBAD, Ion beam assisted deposition method, Método IBAD, Propriété transport, Transport properties, Propiedad transporte, Supraconducteur haute température, High temperature superconductor, Supraconductor alta temperatura, High-temperature superconductors, superconducting materials measurements, superconducting quantum interference devices, superconducting tapes
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Kyushu University, Fukuoka 812-8581, Japan
Nagoya Coated Conductor Center, SRL, Nagoya 456-8587, Japan
Japan Fine Ceramics Center, Nagoya 456-8587, Japan
Superconductivity Research Laboratory, Tokyo 135-0062, Japan
ISSN:
1051-8223
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Electrical engineering. Electroenergetics

Electronics
Accession Number:
edscal.19016985
Database:
PASCAL Archive

Further Information

Current transport properties in Y1Ba2Cu3O7-δ (YBCO) coated conductors obtained by pulsed laser deposition process on a CeO2 capped Gd2Zr2O7-IBAD template have been studied by spatially resolved measurements. We utilized low temperature scanning laser microscopy along with laser induced Seebeck effect imaging and scanning SQUID microscopy that allow us to visualize 1) distributed flux flow dissipation, 2) current blocking obstacles and 3) local current flow, respectively. Combination of those measurements leads deep insights into current limiting mechanism in the coated conductor. Our results show that non-uniform current flow due to spatially distributed obstacles is responsible for the dissipation, whereas grain connectivity in each YBCO grains is not the limiting factor. Typical period of those obstacles is several tens μm to hundreds μm. Detailed correlation between local current flow and dissipation has been observed. Present methods have great potential as tools for basic understanding of current limiting mechanisms in the coated conductors.