Result: On the generation of bicliques of a graph

Title:
On the generation of bicliques of a graph
Source:
3rd Cologne/Twente Workshop on Graphs and Combinatorial OptimizationDiscrete applied mathematics. 155(14):1826-1832
Publisher Information:
Amsterdam; Lausanne; New York, NY: Elsevier, 2007.
Publication Year:
2007
Physical Description:
print, 16 ref
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
COPPE, Universidade Fédéral do Rio de Janeiro, Caixa Postal 68530, 21945-970 Rio de Janeiro, Brazil
IM and COPPE, Universidade Federal do Rio de Janeiro, Caixa Postal 68530, 21945-970 Rio de Janeiro, Brazil
IM, COPPE, and NCE, Universidade Federal do Rio de Janeiro, Caixa Postal 68511, 21945-970 Rio de Janeiro, Brazil
ISSN:
0166-218X
Rights:
Copyright 2008 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems

Mathematics
Accession Number:
edscal.19046563
Database:
PASCAL Archive

Further Information

An independent set of a graph is a subset of pairwise non-adjacent vertices. A complete bipartite set B is a subset of vertices admitting a bipartition B = X U Y, such that both X and Y are independent sets, and all vertices of X are adjacent to those of Y. If both X, Y ≠ Ø, then B is called proper. A biclique is a maximal proper complete bipartite set of a graph. When the requirement that X and Y are independent sets of G is dropped, we have a non-induced biclique. We show that it is NP-complete to test whether a subset of the vertices of a graph is part of a biclique. We propose an algorithm that generates all non-induced bicliques of a graph. In addition, we propose specialized efficient algorithms for generating the bicliques of special classes of graphs.