Treffer: A linear-time 2-approximation algorithm for the watchman route problem for simple polygons
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Mathematics
Weitere Informationen
Given a simple polygon P of n vertices, the watchman route problem asks for a shortest (closed) route inside P such that each point in the interior of P can be seen from at least one point along the route. In this paper, we present a simple, linear-time algorithm for computing a watchman route of length at most two times that of the shortest watchman route. The best known algorithm for computing a shortest watchman route takes O (n4 log n) time, which is too complicated to be suitable in practice. This paper also involves an optimal O(n) time algorithm for computing the set of so-called essential cuts, which are the line segments inside the polygon P such that any route visiting them is a watchman route. It solves an intriguing open problem by improving the previous O (n log n) time result, and is thus of interest in its own right.