Result: The linear arrangement problem parameterized above guaranteed value

Title:
The linear arrangement problem parameterized above guaranteed value
Source:
Algorithms and complexity (6th Italian conference, CIAC 2006, Rome, Italy, May 29-31, 2006)0CIAC 2006. :356-367
Publisher Information:
Berlin: Springer, 2006.
Publication Year:
2006
Physical Description:
print, 19 ref 1
Original Material:
INIST-CNRS
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Computer Science, Royal Holloway University of London, Egham, Surrey TW20 0EX, United Kingdom
Department of Computer Science, Durham University, Durham DH1 3LE, United Kingdom
ISSN:
0302-9743
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Computer science; theoretical automation; systems
Accession Number:
edscal.19150324
Database:
PASCAL Archive

Further Information

A linear arrangement (LA) is an assignment of distinct integers to the vertices of a graph. The cost of an LA is the sum of lengths of the edges of the graph, where the length of an edge is defined as the absolute value of the difference of the integers assigned to its ends. For many application one hopes to find an LA with small cost. However, it is a classical NP-complete problem to decide whether a given graph G admits an LA of cost bounded by a given integer. Since every edge of G contributes at least one to the cost of any LA, the problem becomes trivially fixed-parameter tractable (FPT) if parameterized by the upper bound of the cost. Fernau asked whether the problem remains FPT if parameterized by the upper bound of the cost minus the number of edges of the given graph; thus whether the problem is FPT parameterized above guaranteed value. We answer this question positively by deriving an algorithm which decides in time O(m + n + 5.88k) whether a given graph with m edges and n vertices admits an LA of cost at most m + k (the algorithm computes such an LA if it exists). Our algorithm is based on a procedure which generates a problem kernel of linear size in linear time for a connected graph G. We also prove that more general parameterized LA problems stated by Serna and Thilikos are not FPT, unless P = NP.