Result: Fast filling operations used in the reconstruction of convex lattice sets
LSIIT CNRS UMR 7005, Université Louis Pasteur (Strasbourg 1), Pôle API, Boulevard Sébastien Brant, 67400 Illkirch -Graffenstaden, France
Department of Image Processing and Computer Graphics, University of Szeged, Árpád tér 2, 6720 Szeged, Hungary
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Further Information
Filling operations are procedures which are used in Discrete Tomography for the reconstruction of lattice sets having some convexity constraints. In [1], an algorithm which performs four of these filling operations has a time complexity of O(N2 log N), where N is the size of projections, and leads to a reconstruction algorithm for convex polyominoes running in O(N6 log N)-time. In this paper we first improve the implementation of these four filling operations to a time complexity of O(N2), and additionally we provide an implementation of a fifth filling operation (introduced in [2]) in O(N2 log N) that permits to decrease the overall time-complexity of the reconstruction algorithm to O(N4 log N). More generally, the reconstruction of Q-convex sets and convex lattice sets (intersection of a convex polygon with Z2) can be done in O(N4 log N)-time.