Result: Accurate numerical calculation of shielding current density in HTS thin film : application to noncontact measurement method of critical current density

Title:
Accurate numerical calculation of shielding current density in HTS thin film : application to noncontact measurement method of critical current density
Source:
Advances in Superconductivity XIX: Proceedings of the 19th International Symposium on Superconductivity (ISS 2006), Nagoya, Japan, October 30-November 1, 2006Physica. C. Superconductivity. 463-465:1009-1012
Publisher Information:
Amsterdam: Elsevier Science, 2007.
Publication Year:
2007
Physical Description:
print, 7 ref
Original Material:
INIST-CNRS
Subject Terms:
Crystallography, Cristallographie cristallogenèse, Electronics, Electronique, Electrical engineering, Electrotechnique, Condensed state physics, Physique de l'état condensé, Sciences exactes et technologie, Exact sciences and technology, Physique, Physics, Etat condense: structure electronique, proprietes electriques, magnetiques et optiques, Condensed matter: electronic structure, electrical, magnetic, and optical properties, Supraconductivité, Superconductivity, Propriétés des supraconducteurs de type i et de type ii, Properties of type I and type II superconductors, Courants critiques, Critical currents, Couches supraconductrices et structures de basse dimensionnalité, Superconducting films and low-dimensional structures, Couches supraconductrices à haute tc, High-tc films, Couche mince supraconductrice, Superconducting thin films, Densité courant critique, Critical current density, Densidad corriente crítica, Effet écran, Screening, Equation différentielle, Differential equations, Equation intégrale, Integral equations, Mesure sans contact, Non contact measurement, Medida sin contacto, Méthode mesure, Measuring methods, Potentiel vecteur, Vector potential, Potencial vector, Problème valeur limite, Boundary-value problems, Simulation numérique, Digital simulation, Simulation ordinateur, Computerized simulation, Supraconducteur haute température, High-Tc superconductors, Système non linéaire, Nonlinear systems, 07.05.Tp; 74.25.Sv; 74.72.Bk, Computer-modeling and simulation; Critical currents; Yttrium-based high- TC superconductors
Document Type:
Conference Conference Paper
File Description:
text
Language:
English
Author Affiliations:
Department of Informatics, Faculty of Engineering, Yamagata University, 4-3-16, Johnan, Yonezawa. Yamagata 992-8510, Japan
School of Computer Science, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo 192-0982, Japan
ISSN:
0921-4534
Rights:
Copyright 2007 INIST-CNRS
CC BY 4.0
Sauf mention contraire ci-dessus, le contenu de cette notice bibliographique peut être utilisé dans le cadre d’une licence CC BY 4.0 Inist-CNRS / Unless otherwise stated above, the content of this bibliographic record may be used under a CC BY 4.0 licence by Inist-CNRS / A menos que se haya señalado antes, el contenido de este registro bibliográfico puede ser utilizado al amparo de una licencia CC BY 4.0 Inist-CNRS
Notes:
Physics of condensed state: electronic structure, electrical, magnetic and optical properties
Accession Number:
edscal.19153513
Database:
PASCAL Archive

Further Information

The numerical method has been developed for calculating the shielding current density in a high temperature superconducting thin film. After formulated by use of the current-vector-potential method, the behavior of the shielding current density is expressed as an integral-differential equation. When the initial-boundary-value problem of the equation is discretized with respect to time and space, improper integrals appear as coefficients of the nonlinear system. In order to evaluate the coefficients accurately, the double exponential formula is applied to the improper integrals. Consequently, the shielding current density can be determined accurately. As an application of the method, two types of the noncontact methods for measuring the critical current density jc have been simulated numerically. The results of computations show that the maximum repulsive force is roughly proportional to jc in the permanent magnet method. In addition, it is found that an error of the inductive method is not more than 3% if jc exceeds a certain lower limit.